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1 Lecture 1: Belief propagation

1.1 Factor graphs

We follow here largely the presentation in [20].
We consider �nite bipartite graphs to de�ne special classes of probability mea-

sures. The vertex set is divided into two sets V and F where i 2 V is called a
�variable node�, and a 2 F is called a �function node�. An edge always connects
a variable node with a function node. For a 2 F we write @a for the set of variable
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nodes which are connected with a; and for i 2 V; we write @i for the set of function
nodes connected with i: Usually, we denote variable nodes by i; j or numbers, and
function nodes by a; b; c; : : : . Of course, we cannot keep to this �rule�strictly.
We typically depict the function nodes by �; and the variable nodes by 
:

In the example above, we have @a = f1g ; @b = f1; 2; 4; 5g ; &c, and @1 =
fa; bg ; @5 = fb; e; fg &c.
We also need a �nite set X which we call the �alphabet�. x 2 X V is written

as x = (xi)i2V : To each function node a 2 F a function  a : X @a ! R+ := [0;1)
is attached. This setup is collected into an object 	 := (V; F;E;  ) ; where E is
the set of edges of the graph, which we call a factor graph with alphabet X . For
every such factor graph 	, we de�ne a probability law P	 on X V by

P	 (x) :=
1

Z	

Y
a2F

 a (x@a) (1.1)

which we call the Gibbs measure of the factor graph. Here, x 2X V and x@a is
the restriction of x to the set @a: Z	 is the normalizing constant:

Z	 :=
X
x2XV

Y
a2F

 a (x@a) :

The above de�nition does not exclude that some variable node i 2 V is not con-
nected with any function node, i.e. @i = ;. This means that P	 (x) does not
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depend on xi. It will be convenient to consider also the unnormalized measure

C	 (x) :=
Y
a2F

 a (x@a) ; (1.2)

so that P	 (x) = C	 (x) =Z	: The one-dimensional marginals are de�ned by

C
[i]
	 (x) :=

X
x:xi=x

C	 (x) ; (1.3)

but we will also be interested in higher order marginals, for instance C [i;j]	 :

Example 1.1
The simplest case is if any function node a is connected with just one variable.
Then P	 is a product measure.

Example 1.2
A less trivial case is the following. Take V := f1; : : : ; ng and

F := f(1; 2) ; (2; 3) ; : : : ; (n� 1; n)g :

(i; i+ 1) 2 F is connected with i and i+1 2 V:Writing the variables as x1; : : : ; xn
we arrive at a measure

P (x) =
1

Z

n�1Y
i=1

 (i;i+1) (xi; xi+1)

Exercise 1.3
Prove that Example 1.2 is nothing but a (possibly inhomogeneous) Markov chain.
There exists a probability measure � on X and stochastic matrices pi (x; y) ; i =
1; : : : ; n� 1, x; y 2 X , i.e. pi (x; y) � 0;

P
y pi (x; y) = 1; 8x with

P (x) = � (x1) p1 (x1; x2) p2 (x2; x3) � � � � � pn�1 (xn�1; xn) :
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Example 1.4
A more complicated example is the Ising model. Here V = �N := f�N; : : : ; Ngd ;
and F is the set of bonds of the lattice �N : X is f�1; 1g : The variables we denote
by �i: a = fi; jg 2 F; is connected to i and to j; i.e. @a = fi; jg :

 a (�i; �j) = exp [��i�j]

with the (inverse) temperature parameter � > 0:

Exercise 1.5 (Markov Property)
Assume that the factor graph 	 splits at a variable node i in the sense that the
graph splits into n � 2 disconnected components if we take i out. We write
V (1); : : : ; V (n) for the variable nodes in these components, so that V = V (1) [ � � � [
V (n) [ fig : We write �(k) for the projections X V ! X V (k) . Prove the following
Markov property

P	 (xj�i = xi) =

nY
k=1

P	
�
�(k) = x(k)

�� �i = xi
�
; (1.4)

where P ( �j�i = xi) denotes the conditional law given that the i-the component
equals xi; and x(k) = (xi)i2V (k) : A consequence is that for any k

P	
�
�(k) = x(k)

�� �i = xi; �
(`) = x(`); ` 6= k

�
= P	

�
�(k) = x(k)

�� �i = xi
�

(1.5)

Exercise 1.6
Prove for an arbitrary factor graph 	; the conditional law P	 (xj�i = z) can be
realized as an unconditional one by extending the factor graph in the following
way:

P	 (xj�i = z) = P	0 (x) ;

where 	0 is obtained by adding one function node, call it c; which is connected
only with i; and  c (xi) = I (xi = z) :

The main interest in these lectures will be in cases where the factor graph
itself is random: Either the whole graph is random, or the graph is �xed, but the
functions attached to the function nodes are random. We always write (
;F ;P) for
the probability space governing this randomness. In contrast, we will occasionally
write expectations under P	 as h�i	 or simply h�i ; of it is clear from the context
what 	 is. These will be considered to be �quenched�, i.e. for �xed ! 2 
 which
governs the randomness of 	:

Example 1.7
The Sherrington-Kirkpatrick model has V = f1; : : : ; Ng and function nodes fi; jg
for every pair of variable nodes. The fi; jg is connected with i and with j: The
functions are

 fi;jg (�i; �j) := exp
h
�Jij�i�j=

p
N
i
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where the Jij are i.i.d. standard Gaussian variables de�ned on (
;F ;P) : Then P	
is de�ned by

P	 (�) =
1

ZN;�
exp

"
�p
N

X
1�i<j�N

Jij�i�j

#
;

where � > 0 is the (inverse) temperature parameter. This is then a random prob-
ability measure on f�1; 1gN ; formally a Markov kernel from (
;F) to f�1; 1gN :
One can also include an external �eld, i.e. consider the measure

1

ZN;�;h
exp

"
�p
N

X
1�i<j�N

Jij�i�j + h
X
i

�i

#
;

where h 2 R (which may also be random, but we usually take it just �xed). This
can be achieved by adding a function node ai to every i; which is just connected
with i, and  ai (�i) := e

h�i :
Below is the drawing of the factor graph for N = 4 also with the function nodes

for the external �eld.

1.2 Belief propagation for factor graphs which are trees

In probabilistic language, belief propagation (abbreviated as BP) is based on con-
ditional distributions: Given a model described by a factor graph, one tries to
compute the distribution of �i at one site i 2 V given �the in�uence�which comes
along the graph. We follow here the notation of [20].
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We �rst assume that the factor graph 	 is a �nite tree.
We �x j 2 V and take an arbitrary a 2 @j: Fixing the pair (j; a) we consider

two subtrees of the original one: The �rst one has the nodes j; a; the edge (j; a) ;
and all the nodes which are connected with j with a self-avoiding path which
passes through a: This is evidently a bipartite graph, and to the function nodes in
this graph we attach the original  -functions. We call this factor graph 	a!j and
de�ne the message passage �from a to j�by

�̂a!j (x) := C
[j]
	a!j

(x) ; x 2 X :

The second subtree has node j; and all the nodes which can be connected with
j through a self-avoiding path which avoids a: It can of course happen that the
node set consists only of j; but otherwise, the graph is again bipartite, and we
denote it by 	j9a:

Then we de�ne
�j!a (x) := C

[j]
	j9a

(x) :

In the special case where 	j9a just consists of j; we de�ne �j!a (x) = 1.1 From

1I follow here the notation of [20] which is a bit misleading. �j!a is not the in�uence of j
on a; but the in�uence on j by the part of the graph which avoids a: It would be better to write
�j9a:

6



the tree structure of the factor graph, it is immediate that 	j9a is the union of
the graphs 	b!j for b 2 @jna with j as the only common node. In particular,
the set of factor nodes in the graphs 	b!j; b 2 @jna; are disjoint. Therefore, the
expression (1.3) just factorizes over the di¤erent b 2 @jna; and one gets

�j!a (x) =
Y
b2@jna

�̂b!j (x) : (1.6)

A similar identity expresses the �̂ in terms of the � :Writing @a = fj; k1; : : : ; kmg,
	a!j can be presented as the nodes j; a with the edge between them, the disjoint
union of the C	ki9a

for i = 1; : : : ;m; and the edges between the ki and a: Then
the expression (1.2) for C	a!j

factorizes into  a (xj; xk1 ; : : : ; xkm) and the C	ki9a

and we get

�̂a!j (xj) =
X

xk1 ;:::;xkm

"
 a (xj; xk1 ; : : : ; xkm)

mY
i=1

�ki!a (xki)

#
: (1.7)

From the �̂a!j, we can compute the marginal C
[j]
	 by

C
[j]
	 (x) =

Y
a2@j

�̂a!j (x) (1.8)

from which we can get the marginal probability measure by normalization:

P	 (�j = x) =

Q
a2@j �̂a!j (x)P

x2X
Q
a2@j �̂a!j (x)

:

The �j!a and �̂a!j are usually called �message passages�, and the whole pro-
cedure �belief propagation�.

Remark 1.8
Some authors, for instance [10], [11], normalize � and �̂ to probability measures.
Then the above equations (1.6), (1.7) hold up to normalization.

If the factor graph is a tree, we can express also more complicated marginals
through the �̂. Consider a subset F 0 � F of function notes, and V 0 the set of
variable nodes which are adjacent to F 0: With 	0 we denote the corresponding
factor graph and assume it is connected. Further, let @0 be the set of function
notes of 	 which are not in F 0 but which are adjacent to a variable node j 2 V 0:
Evidently, to every a 2 @0 there is a unique element j 2 V 0 \ @a: We write � (a)
for this element j: This is de�ned only for a 2 @0: The following expression for the
multidimensional marginal on V 0 is evident from the tree structure.
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Lemma 1.9

P	 (�j = xj; j 2 V 0) =
1

Z 0

Y
a2F 0

 a (x@a)
Y
a2@0

�̂a!�(a)
�
x�(a)

�
;

where Z 0 is the proper normalization.

We formulate a useful factorization property. We abbreviate P	 (�i = �) by �i.
Furthermore, for any function node a 2 F we write �a for the marginal of P	 on
the components in @a.

Proposition 1.10
For a �nite factor graph which is a tree, one has

P	 (x) =
Y
a2F

�a (x@a)
Y
i2V

�i (xi)
1�j@ij :

Proof. We can assume that the graph is connected as otherwise one can prove the
identity for the components separately which enter on both sides of the claimed
identity in a multiplicative way.
Then we observe that we may assume that the vertices with degree 1 are all

variable nodes. In fact if there is a function node with degree 1; its contribution is
just that the adjacent variable comes with the the multiplication of the function
from the function node, and one can change the functions at one of the other
function nodes to take that into account. If the equation is true for the factor
graph without this function node, then one quickly checks that it is also true with
this additional single argument function.
We use induction on the number m of function nodes. If m = 1; then the claim

is evident.
We assume m � 2: By the �niteness of the graph, and the tree property,

there exists a variable node which has degree 1; and such that its unique adjacent
function node a has the property that all the variable nodes in @a have degree
one, except one, call it i. We apply the Markov property (1.5). We write �0 for
the projection onto X (V n@a)[fig; and �00 for the projection onto X @ani: Then, with
x = (x0;x00) accordingly

P	 (x) = P	 (�
0 = x0; �00 = x00) = P	 (�

00 = x00j�0 = x0)P	 (�0 = x0)
= P	 (�

00 = x00j�i = xi)P	 (�
0 = x0)

=
�a (x@a)

�i (xi)
P	 (�

0 = x0) :

Up to normalization, the second factor can be written as

P	 (�
0 = x0) �

Y
b6=a

 b (x@b)�a (xi)
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where
�a (xi) :=

X
x@anfig

 a (x) :

This contribution can however be included by changing the functions at one of the
factor nodes 6= a adjacent to i (there is at least one), call it c; by changing the
function  c there to

 0c (x@c) :=  c (x@c)�a (xi) :

The new factor graph has one function node less, i has degree j@ij � 1; and so we
can apply the induction hypothesis, getting

P	 (�
0 = x0) =

Y
b6=a

�b (x@b)
Y

j2V n@a

�j (xj)
1�j@jj �i (xi)

2�j@ij :

So, we get

P	 (x) =
�a (x@a)

�i (xi)
P	 (�

0 = x0) =
Y
b

�b (x@b)
Y
j

�j (xj)
1�j@jj

as claimed.
We can use the above proposition the express the standard entropy

H (P	) := �
X
x

P	 (x) logP	 (x)

in terms of the local quantities:

H (P	) =
X
a2F

H (�a) +
X
i2V

(1� j@ij)H (�i) :

Another simple consequence:

P	 (x) =
1

Z	

Y
a

 a (x@a) =
Y
a

�a (x@a)
Y
j

�j (xj)
1�j@jj ;

and therefore, for any x

Z	 =

Q
a  a (x@a)Q

a �a (x@a)
Q
j �j (xj)

1�j@jj ;

logZ	 =
X
a

log
 a (x@a)

�a (x@a)
�
X
j

(1� j@jj) log �j (xj) :
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We multiply this equation with P	 (x) and sum over x: This gives

logZ	 =
X
a

X
x@a

�a (x@a) log
 a (x@a)

�a (x@a)
�
X
j

(1� j@jj)
X
xj

�j (xj) log �j (xj) (1.9)

We express it in terms of the messages � and �̂ in the case of a tree. For that
we de�ne for a 2 F; i 2 V

Fa (	;�) := log
X
x@a

 a (x@a)
Y
i2@a

�i!a (xi) ;

Fi (�) := log
X
xi

Y
b2@i

�̂b!i (xi) ;

F(i;a) (�) := log
X
xi

�i!a (xi) �̂a!i (xi) :

We de�ne the Bethe free entropy in a factor graph 	 with the collection of
beliefs � = f�i!a; �̂a!igi2V;a2F by

F� (	;�) :=
X
a2F

Fa (	;�) +
X
i2V

Fi (�)�
X
(i;a)2E

F(i;a) (�) : (1.10)

Theorem 1.11
If 	 is a �nite factor graph which is a tree, with the messages �; �̂ given by (1.6)
and (1.7). Then

logZ	 = F� (	;�) : (1.11)

Proof. We prove it by induction on M , the number of function nodes. In the
caseM = 1; there is just one function node a connected with a number of variable
nodes, and the formula is easily checked.
Next assume thatM � 2 and that the formula is proved for factor graphs with

M � 1 function nodes. We can again assume that the factor graph is connected.
We use a simple pruning argument. Assume �rst that there is a function node a

of degree 1; i.e. which is connected with just one variable node, call it for simplicity
1: As the graph is connected and the number of function nodes is bigger than one,
1 is connected to a number of other function nodes, call them b1; : : : ; bn:We prune
now the original factor graph, call it 	 to the following factor graph 	� where a
is removed. The function in 	� are the same as in 	; except of course that  a is
missing, and  b1 is replaced by

 �b1 (x1; : : :) :=  b1 (x1; : : :) a (x1) :
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It is evident that Z	 = Z	� ; and we check that the right hand side of (1.11) is not
changed. For that, we check the changes in the � : For notational simplicity, we
write b for b1:

�̂�b!1 (x1) = �̂b!1 (x1) a (x1) ;

��1!b = �1!b= a (x1) :

All others remain unchanged. From that, we see that

Fb (	
�) = log

X
x@b

 �b (x@b)
Y
i2@b

��i!b (xi) = Fb (	) ;

and for the other function nodes in 	�; they remain the same. ThereforeX
c2	�

Fc (	
�) =

X
c2	

Fc (	)� Fa (	) =
X
c2	

Fc (	)� log
X
x1

 a (x1) �1!a (x1) :

In a similar way, one checks that (the set of variable nodes stays unchanged)X
i2	�

Fi (	
�) =

X
i2	

Fi (	) :

Finally, F(i;c) (	�) = F(i;c) (	) for c 6= a; but there is in 	 the additional bond
(1; a) which gives

F(1;a) (	) = log
X
x1

�̂a!1 (x1) �1!a (x1) ;

so this cancels with the correction in
P

c2	� Fc (	
�) : Therefore, the right hand

side in (1.11) remains unchanged when switching from 	 to 	�:
It remains to consider the case when 	 does not have a function node with

degree 1: Then, there is a function node, call it again a, which is connected with a
number of variable nodes i1; : : : ; ik of degree one, and one variable node of higher
degree, call this node i: Then prune all the variable nodes i1; : : : ; ik; but keeping
a and i; and the rest. We simply change  a to  

�
a by putting

 �a (xi) :=
X

xi1 ;:::;xik

 a (xi; xi1 ; : : : ; xik) :

Then again logZ	 = logZ	� ; and the reader will easily check that also the rhs of
(1.11) remains unchanged.
After this operation, the number of function nodes is unchanged, but we have

created one which has degree one, and we can do the pruning of this function node
in the way explained before.
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Up to now, the de�nition of the � and the �̂ was based on the assumption
that 	 has a tree structure. In particular, this was also used heavily for (1.6)
and (1.7) and for all the computations above. However, the main applications
are for models where the factor graph is not a tree. There is then no clear way
how to de�ne message passage quantities �i!a; �̂a!i which satisfy (1.6) and (1.7).
Nonetheless, it makes sense to ask if such quantities exist, and if yes, how many,
and also their relation with other objects of interest like the logZ: Typically, one
has to be satis�ed with approximately satis�ed equations which are exact only in
a N ! 1 limit, where N measures the size of the model, usually the number
of variable nodes. A serious problem is the question of uniqueness, formulated in
an appropriate sense. We will come to such issues in connection with the TAP
equations.
One possibility to settle this issue is to de�ne recursively quantities which are

de�ned for an arbitrary �nite factor graph. More precisely, we are going to de�ne
�
(t)
i!a; �̂

(t)
a!i for t 2 N, fi; ag 2 E; in the following way. The idea is in fact to use

(1.6) and (1.7) for a recursive de�nition. The base is to set

�
(1)
j!a (x) = 1 (1.12)

for all fa; jg 2 E; and all x 2 X ; and then with the notation @a = fj; k1; : : : ; kmg

�̂
(t)
a!j (xj) :=

X
xk1 ;:::;xkm

"
 a (xj; xk1 ; : : : ; xkm)

mY
i=1

�
(t)
ki!a (xki)

#
(1.13)

�
(t+1)
j!a (xj) :=

Y
b2@jna

�̂
(t)
b!j (xj) ; xj 2 X : (1.14)

The product over the empty set is understood to be 1:
This is evidently well de�ned for any �nite factor graph, and one may ask if

there exists a limit

�̂�a!j (xj) := lim
t!1

�̂
(t)
a!j (xj) ; �

�
j!a (xj) := lim

t!1
�
(t)
j!a (xj) ;

which then certainly will have to satisfy (1.6) and (1.7). Unfortunately, but fairly
evidently, such a convergence is restricted again to trees, so nothing seems to be
gained. There are however two points:

� Even for �nite trees, the recursive construction leads to e¢ cient algorithms
to compute the quantities, as we will see in a moment. This has lead to
e¢ cient decoding algorithms for a class of codes, a topic which we will not
discuss here. For that, see the Chapter 15 in [20].2

2One should mention that the �rst use of belief propagation was in coding theory.
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� The crucial point is that for large factor graphs of size N , there can be
interesting situation where the iterative scheme nearly stabilizes in the N !
1 limit, and leads to powerful tools to analyze the model. There is a huge
literature about this (for instance [22] with applications to neural nets, and
[28] for statistical applications, and also the monograph [20]).

For the moment, we just prove the �rst point, and we show that for a �nite
factor graph which is a tree, the iteration stabilizes at the correct objects after
�nitely many iterations. This in fact leads to a polynomial time algorithm for the
marginals of P	 in case of a tree.
For a �nite factor graph 	, we de�ne diam (	) to be the maximum graph

distance between any nodes.

Theorem 1.12
Let the factor graph 	 be a �nite connected tree. Then for t � diam (	)

�
(t)
i!a (x) = �i!a (x) ;

�̂
(t)
a!i (x) = �̂a!i (x) ;

for all fi; ag 2 E; and all x:

Proof. We may assume that the graph is connected. We label the directed bonds
of the graph by natural numbers. For every directed bond, either (i; a) or (a; i) ;
we consider the longest (directed) self-avoiding path in the graph, ending with the
last directed bond the given one. Then, the bond gets the level ` (i; a) (or ` (a; i))
given by the number of bonds in such a path.
From this construction, it is clear that if ` (i; a) = n; then any b 2 F with

(b; i) 2 E has ` (b; i) � n � 1: The same if ` (a; i) = n; then any j 2 V with
(j; a) 2 E satis�es ` (j; a) � n� 1:
We now claim that if t � ` (i; a) ; then �(t)i!a = �i!a; and if t � ` (a; i) ; then

�̂
(t)
a!i = �̂a!i. This is proved by induction on `.
First ` = 1 : If ` (i; a) = 1; the i has degree 1; and �i!a (x) = �

(t)
i!a (x) = 1 for

all t and all x: If ` (a; i) = 1 then a has degree 1; and �̂(t)a!i (x) = �̂a!i (x) =  a (x) :
So we assume ` = n > 1: If ` (i; a) = n; then for all b with (b; i) 2 E; one has

` (b; i) � n� 1; and by the induction hypothesis, one has for t � n

�
(t)
i!a (x) :=

Y
b2@ina

�̂
(t�1)
b!i (x) =

Y
b2@ina

�̂b!i (x) = �i!a (x) :

Similarly, if ` (a; i) = n; then for all j 2 @ani one has ` (j; a) � n� 1 and one gets
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for t � n

�̂
(t)
a!i (xi) : =

X
x@ani

24 a (x@a) Y
j2@ani

�
(t)
j!a (xj)

35
=

X
x@ani

24 a (x@a) Y
j2@ani

�j!a (xj)

35 = �̂a!i (xi) :

This proves the claim.
If the factor graph is not a tree, one can still try to set up the above iteration

scheme and discuss the question if whether the iteration converge in an approxi-
mate sense for large sizes of the graph.

Remark 1.13
Another, even simpler method is to de�ne for any �nite factor graph 	 the mea-
sures �i!a; �̂a!i on X in the following way: For �i!a consider the graph 	0

obtained by removing the node a with all its connections, and in this graph com-
pute P	0 as in (1.1), and its one-dimensional marginal on the variable node i: This
de�nes �i!a; which is of course normalized to a probability measure. Similarly, for
�̂a!i, de�ne 	00 by removing all function nodes in @ina and compute in this factor
graph the marginal at i of the Gibbs measure. One may then ask under which
conditions the relations (1.6) and (1.7) are approximately true. (The equations up
to normalization, as �i!a; �̂a!i are normalized). For such results, see [10], [11].

1.2.1 Simpli�cation for binary function nodes

The scheme can be simpli�ed if the function nodes have all degree 1 or 2: We
�rst assume that the function nodes have all degree 2: A function node of degree
2 connects two variable nodes, say i; j, and we introduce a graph structure with
vertex set V by connecting two vertices i; j if in the original factor graph, there is a
function node a with @a = fi; jg :We write (ij) for this function node. We denote
by @̂i the subset of variable nodes which are connected via a function node with i:
(Later, we will of course leave out the ^. Here, we just do it to distinguish between
the formerly de�ned @i). We then write  ij for the function on X 2 attached to
the function node (ij). Furthermore, we write �i!j instead of �i!(ij):
Writing out the original belief equations, we get

�i!j = �i;(ij) =
Y
k2@̂inj

�̂(ki)!i

�̂(ki)!i (xi) =
X
xk

 ki (xk; xi) �k!(ki) (xk) =
X
xk

 ki (xk; xi) �k!i (xk) ;
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and so we simply get

�i!j (xi) =
Y

k2@infjg

X
xk

 ki (xk; xi) �k!i (xk) :

In the presence of function nodes  i of degree 1; attached to i; we get

�i!j (xi) =  i (xi)
Y

k2@infjg

X
xk

 ki (xk; xi) �k!i (xk) ;

and for the recursive scheme, we get

�
(t+1)
i!j (xi) =  i (x)

Y
k2@infjg

X
xk

 ki (xk; xi) �
(t)
k!i (xk) : (1.15)

For the marginals, we get

�i (xi) : = C
[i]
	 =  i (xi)

Y
k2@i

X
xk

 ki (xk; xi) �k!i (xk) (1.16)

P	 (�i = xi) =
 i (xi)

Q
k2@i

P
xk
 ki (xk; xi) �k!i (xk)P

x  i (xi)
Q
k2@i

P
xk
 ki (xk; xi) �k!i (xk)

:

1.3 The general philosophy

Models where the underlying factor graph is a tree are not of great interest. How-
ever, many models have factor graphs which are �locally tree like�. This means
that the total size N (i.e. the number of variable nodes) is large, and one is in-
terested in the N ! 1 limit, and for any variable node i, the part of the factor
graph which is at graph distance � n, is for any �xed n a tree for N su¢ ciently
large. If the graph is random, one has a corresponding probabilistic statement.
An example is theK-SAT problem from theoretical computer science. I explain

the simpler (random) XORSAT problem which in contrast to the K-SAT problem
is mathematically completely solved. Here, one considers over the �eld Z2; M
linear equations in N variables. We will take M = �N; � > 0 �xed, and N large.
So, the system is

NX
i=1

gajxj = ba; a = 1; : : : ;M

with gaj; ba 2 f0; 1g : In the random K-XORSAT problem, one takes for every
equation a; K of coe¢ cients gaj equal to 1 and others 0; i.e.

gaj =

�
1 if j 2 Ba
0 if j =2 Ba

;
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whereBa � f1; : : : ; Ng ; jBaj = K; is randomly chosen with probability
�
N
K

��1
; and

independently for any of the equations independently. Furthermore, one chooses
the ba according to random coin tossing, or in another version just 0: If ba = 0
for all a; then of course, there is always the 0-solution. But there one still may
be interested in the number of solutions. If some of the bi are 1; then there is the
question whether �typically�a solution exists.
The problem can be formulated through a factor graph: The variable nodes

are i 2 f1; : : : ; Ng ; and the function nodes are indexed by the equations. Every
function node a 2 f1; : : : ;Mg is connected with the K variable nodes j which
satisfy gaj = 1; i.e. @a = Ba: The functions  a are de�ned by

 a

�
fxjgj2Ba

�
:= I

�X
j2Ba

xj � ba = 0
�
;

sums computed in Z2.
In that case, Z	 is the number of solutions of the linear system. Of course, the

set of solutions can be determined by Gauss elimination in essentially N3 steps.
An interesting question is however the large N behavior for typical realizations of
the system under the above random choice. Z	 is just the number of solutions.
If M = �N; K �xed (for instance K = 3), then the factor graph is locally tree

like in the sense that if one is �xing a node, for instance a function node a, i.e.
an equation, then for any n; the probability that the factor graph, restricted to a
graph neighborhood of radius n of a; is a tree, converges to 1 as N !1:
The model has in fact two critical values:

�d (K) := sup
�
� : x > 1� exp

�
�K�xK�1

�
; 8x 2 (0; 1]

	
:

For instance, �d (3) = 0:818469::: . For � < �d (K) ; the believe propagation
equations have a unique �xed point, and then

logZ	 � F� (	;�)

for this �xed point �.
For � > �d (K) ; the situation changes drastically, and the believe propagation

has many �xed points, despite the fact that the factor graph is still locally tree
like. However, in this regime, the loops start the play a considerable role. There
are however still methods based on belief propagation which leads to detailed
analysis: Essentially, one is then interested in the number of solutions of the
belief propagation equations. This can be done by constructing an auxiliary model
which has a unique BP �xed point and whose Bethe entropy counts the number
of BP �xed points of the original model. This is discussed in Chapter 19 of
[20], but would lead too far here. In fact, the mathematical foundation of these
ideas is very rudimentary. The random XORSAT is mathematically completely
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understood, but in related models, for instance in the K-SAT problem, there are
many mathematically open problems.
The fact is that the mathematical proofs, if they exist, typically use the intu-

ition coming from the these ideas, but then use hard combinatorial considerations
to achieve the result.

2 Lecture 2: The TAP equations

For certain models, there is a possible simpli�cation of the belief propagation equa-
tions. This requires that the graph is essentially (nearly) fully connected, but with
weak interactions which of course means that the graph is not locally tree like.
However, the weakness of the interactions suggests that the �ux of information
through the network is not in�uenced by local loops in the network. These equa-
tions are usually called TAP equations, after Thouless, Anderson, and Palmer,
who introduced them �rst for the SK-model [27]. Variants of these equations have
recently found wide applications, also in the analysis of neural nets, and in sta-
tistics and compressed sensing. The �eld is too large to be presented here in any
details, and I focus on the SK-model and the perceptron, giving some sketchy
information also for the applications to compressed sensing. The chapter here is
essentially non-rigorous, giving a heuristic derivation of the equations from the
belief propagation equations.
For the SK-model, the validity of the TAP equations has been proved by Ta-

lagrand for high temperature in [25], and recently by [1] in the full temperature
regime. However, the focus of this minicourse is not to use established spin glass
theory to prove the TAP equations, but to use the TAP equations to prove prop-
erties of the models. For the SK model, there are the interpolation methods �rst
used by Guerra, and very special inequalities, together with the theory developed
by Panchenko (see [23]), but up to this date, they seem to be powerless for many
models, for instance the perceptron. Also, these methods are somewhat indirect,
and don�t give much insight what is really happening on the level of Gibbs distri-
bution.

2.1 The Sherrington-Kirkpatrick model

As an example, we write out the belief propagation for the SK-model. We take
the model also with an external �eld. The alphabet is X = f�1; 1g and the set of
spin variables is f�igi=1;:::;N : The Hamiltonian is given as

�
NX

1�i<j�N

Jijp
N
�i�j + h

NX
i=1

�i (2.1)
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Here h is a real parameter and � > 0: The Jij are usually assumed to be standard
Gaussians, so that we get a factor graphs with random functions. For the moment,
we may assume that the Jij are just �xed numbers.
Assuming that we can use (1.16) approximately, for large enough N; we get

P (�i = �1) �
e�h

Q
k:k 6=i

P
�k
exp

h
��Jikp

N
�k

i
�k!i (�k)P

�=�1 e
�h
Q
k:k 6=i

P
�k
exp

h
� �Jikp

N
�k

i
�k!i (�k)

:

We denote by �!i the product measure of the �k!i on f�kgk 6=i : As it appears in the
numerator and denominator, we may assume that it is normalized to a probability
measure. With this notation, we have

P (�i = �1) �
e�hE�!i

exp
h
�
P

k:k 6=i
�Jikp
N
�k

i
P

�=�1 e
�hE�!i

exp
h
�
P

k:k 6=i
�Jikp
N
�k

i :
Setting mi := h�ii =

P
�=�1 �P (�i = �) ; we get

mi �
E�!i

P
�=�1 �e

�h exp

"
�
P
k:k 6=i

�Jikp
N
�k

#

E�!i

P
�=�1 e

�h exp

"
�
P
k:k 6=i

�Jikp
N
�k

# =

E�!i
sinh

" P
k:k 6=i

�Jikp
N
�k + h

#

E�!i
cosh

" P
k:k 6=i

�Jikp
N
�k + h

# : (2.2)
We use now the fact that �!i is a product measure. We write mk!i := E�!i

�k:
Under the product measure P�!i

;
P

k:k 6=i
�Jikp
N
(�k �mk!i) is approximately nor-

mally distributed with a certain variance, call it 
2 > 0 which is of no interest to
us. Using this, we get

E�!i
sinh

�X
k:k 6=i

�Jikp
N
�k + h

�
= E�!i

sinh

�X
k:k 6=i

�Jikp
N
mk!i + h+

X
k:k 6=i

�Jikp
N
(�k �mk!i)

�
=

1

2

h
exp

�X
k:k 6=i

�Jikp
N
mk!i + h

�
E�!i

exp

�X
k:k 6=i

�Jikp
N
(�k �mk!i)

�
� exp

�
�
X

k:k 6=i

�Jikp
N
mk!i � h

�
E�!i

exp

�
�
X

k:k 6=i

�Jikp
N
(�k �mk!i)

� i
� 1

2

�
exp

�X
k:k 6=i

�Jikp
N
mk!i + h

�
e


2=2 � exp
�
�
X

k:k 6=i

�Jikp
N
mk!i + h

�
e


2=2

�
= e


2=2 sinh

�X
k:k 6=i

�Jikp
N
mk!i + h

�
:
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Here we have used the approximation

E�!i
exp

�X
k:k 6=i

�Jikp
N
(�k �mk!i)

�
� 1p

2�


Z
exe�x

2=2
2dx = e

2=2;

and the same for the expression with the minus sign before
P

k:k 6=i : Similarly, we
get for the denominator in (2.2):

e

2=2 cosh

�X
k:k 6=i

�Jikp
N
mk!i + h

�
;

and so, e

2=2 cancels out, and we get

mi � tanh
�
h+

X
k:k 6=i

�Jikp
N
mk!i

�
: (2.3)

The somewhat �shy point with this pseudoequation is that we don�t really
know what mk!i is. A reasonable procedure is to de�ne �k!i with the recursive
procedure we have discussed in the last lecture, or the one in Remark 1.13. There
is in fact convergence in the high temperature regime, but we will not discuss this
here, as we will analyze it for the TAP equations.
The TAP equations are obtained by approximating mk!i by mk plus a correc-

tion which in fact is of crucial relevance also in the N ! 1 limit. If the graph
would be a tree, then we obtain �k!i by putting simply Jki = 0: Therefore, using
the above �equation�for mk instead of mi :

mk � tanh

�
h+

X
j:j 6=k

�Jjkp
N
mj!k

�
= tanh

�
h+

X
j:j 6=i;k

�Jjkp
N
mj!k +

�Jikp
N
mi!k

�
� tanh

�
h+

X
j:j 6=i;k

�Jjkp
N
mj!k

�
+
�Jikp
N
mi!k

�
1� tanh2

�
h+

X
j:j 6=i;k

�Jjkp
N
mj!k

��
� mk!i +

�Jikp
N
mi!k

�
1�m2

k!i
�
:

The crucial point is that mk � mk!i is of order 1=
p
N only, and higher order

corrections don�t matter in the N !1 limit. Also, for the same reason, the mk!i
can be replaced in the correction term by mi (1�m2

k) : Implementing that into
(2.3), one arrives at

mi � tanh
�
h+

X
k:k 6=i

�Jikp
N
mk � �2mi

X
k:k 6=i

J2ik
N

�
1�m2

k

��
:
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The next heuristic step is that the direct in�uence of one single Jik on mk is again
of order 1=

p
N; and can be neglected on the correction term, therefore, by a law

of large numbers, we can replace the correction term by

�2mi

 
1� 1

N

NX
k=1

m2
k

!
;

so we �nally arrive at the TAP equation

mi � tanh
 
h+

X
k:k 6=i

�Jikp
N
mk � �2mi

 
1� 1

N

NX
k=1

m2
k

!!
:

From standard mean-�eld type models, like the Curie-Weiss model or variants
of it, one wouldn�t expect the third term inside tanh (�) ; but it turns out to be
absolutely crucial. It is called the Onsager correction term.3

Usually one does one further approximation step which is however valid only
in the high-temperature regime, namely to apply a law of large number for the
average over the m2

k:
4 De�ning

q := lim
N!1

1

N

NX
k=1

m2
k

assuming that this q is just a non-random number, we can �nd an equation for it:
Using again (2.3):

mk = tanh

�
h+

X
j:j 6=k

�Jjkp
N
mj!k

�
;

and using that mj!k should be independent of Jjk and thereforeX
j:j 6=k

Jjkp
N
mj!k

should be Gaussian with variance
1

N

X
j:j 6=k

m2
j!k �

1

N

X
j

m2
j � q:

Therefore, q should satisfy

q =

Z
tanh2 (h+ �

p
qz)� (dz) (2.4)

with � the standard normal distribution.
3This equations is the only equation I know where three Nobel laureates have been involved:

Thouless, Anderson, and Onsager.
4The reader should not be overly concerned about the absent of mathematical rigour in these

approximations. We will have rigorous versions of these arguments in the next lecture.
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Lemma 2.1 (Guerra-Latala)
For any � � 0; h 6= 0; the equation (2.4) has a unique solution q = q (�; h) > 0:
For h = 0; q = 0 is always a solution which is the unique one for � � 1: For
h = 0; � > 1; there is one other solution q (�; 0) > 0:

Proof. [25] Proposition 1.3.8
Using this, one arrives at the TAP equations for the high temperature regime,

with a simpler Onsager-correction.

mi � tanh
�
h+

X
k:k 6=i

�Jikp
N
mk � �2 (1� q)mi

�
:

It is implicitly understood that these approximate equations become true equa-
tions, in a way to be made precise, in the N !1 limit.
The replacement of N�1P

km
2
k by q; solution of (2.4) is certainly only possible

in an appropriately de�ned high-temperature regime. In physics literature, this
high temperature regime is claimed to be the region (�; h) which satis�es

�2
Z

� (dx)

cosh4
�
h+ �

p
qx
� � 1; (2.5)

which is the celebrated de Almeida - Thouless condition, (AT) for short,
which is generally believed (but not completely proved) to be the region where the
replica symmetric formula for the free energy holds:

f (�; h) : = lim
1

N
logZN

=

Z
log cosh (h+ �

p
qz)� (dz) +

�2 (1� q)2

4
:

2.2 The perceptron

The perceptron was proposed by Frank Rosenblatt in 1957 as a simple binary
classi�er. Originally, it was considered as a single layer network. After it was
realized that this has severe limitations, it was more or less forgotten. Later, it
was realized that multi-layer versions don�t have these limitations.
Consider two sets disjoint sets C1; C2 � Rn (or � Zn, f�1; 1gn). Given a point

x 2 C1[C2; the network should be able to �decide�whether x 2 C1 or 2 C2. The
network does that in a very simple way. For w 2 Rn; b 2 R it decides that x 2 C1
provided hx;wi � b � 0 and that x 2 C2 if hx;wi � b < 0; always assuming of
course that one knows that x has to be in one of the two sets. h�; �i is the usual
inner product. Formally, it is described in the following way: The �input signal�
is x and the output signal is

y := 1[0:1) (hx;wi � b) :
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w and b are the parameters of the model. It is evident that this is possible only
if C1; C2 can be separated by a hyperplane. For instance, logical operations AND
and OR on f0; 1g2 can be separated in this way, but XOR not.
However, it can be proved that this drawback disappears with multi-layer

perceptrons. There, one typically allows in a �rst layer to compute a sequence

yi :=  
�

x;w(i)

�
� bi

�
; i = 1; : : : ;m

where  is a monotone function R ! R, not necessarily 1[0:1):  (x) = tanh (x)
is often taken, so that the output is again real valued. The w(i) are 2 Rn; and
bi 2 R. The output of the �rst layer is then a vector in Rm: Then, this output y
is taken as the input in another layer which for the simple classi�cation problem
gives output 2 f0; 1g through

z := 1[0:1) (hy;vi � c) ;

with v 2 Rm; c 2 R the parameters for the second level. It can be proved that
by taking the parameters of the network appropriately, one can separate arbitrary
�nice�sets C1; C2:
For reasons which are mathematically not properly understood, networks with

many such layers behave algorithmically much better than networks with just two
or three layers. Today networks in AI often have dozens of layers.
The main problem is of course to device algorithms which determine the pa-

rameters w(i);v; bi; c of the network. Without going into any details, this is done
by a �training phase�where one presents a sequence of input signals x(1); : : : ;x(N)

to the network together with the information to which of the sets they belong.
There are algorithms (�back propagation�and steepest decent) which modify the
parameters. Ideally, the network is able to adjust its parameters after mistakes.
We stick here with the single layer perceptron, and ask the following �simple�

question: Given are M patterns (��i )1�i�N ; 1 � � � M; say �� 2 f�1; 1gN ; one
has to �nd �neural net parameters�wi, say in R, i = 1; : : : ; N , and b 2 R, which
produce �true�for every pattern ��, i.e. such that

1[0:1) (h��;wi � b) = 1; 8� = 1; : : : ;M:

In such a case one would say that the one layer perceptron with parameters w
and b has been able to store the M patterns. The question is: Given N , large of
course, what is the maximal number of patterns which can be stored. A widely
used (theoretical) benchmark for the behavior of such networks is to assume that
the NM elements ��i 2 f�1; 1g ; 1 � i � N; 1 � � �M; are just i.i.d. symmetric
random variables. Then one can ask about properties which hold with probability
P-probability close to 1; where P governs these random variables. It turns out that
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the proper dependence of M on N is that M = �N for some parameter, and then
it turns out that there is a critical value for �:
The �rst results were obtained by Elizabeth Gardner (partly together with

Derrida) in the late eighties ([15]). Her results are based on replica computations.
Later, there was also an approach by Mézard [18] using the so-called cavity method
which is close to �belief propagation�. However, neither the Gardner approach nor
the one by Mézard is rigorous. The only rigorous results obtained so far are the
ones by Talagrand (and in a special case by Shcherbina and Tirozzi) which �ll
about 4 chapters in his two-volume monograph [25] on spin glasses, and which
cover part of the claims by the physicists.
Fixing b; and one pattern ��, the set of w�s which do the job, are the elements

of a half space
Hb;�� := fw : h��;wi � bg ;

and the question is whether
M\
�=1

Hb;�� 6= ;;

or more generally about the volume ofHb;�� : To speak about the volume one should
restrict the set of w�s for instance require kwk = N; or wi 2 f�1; 1g which are
the two cases investigated by Gardner-Derrida.
Mathematically easiest are patterns with continuous instead of discrete com-

ponents, typically assumed to be standard normal, and the w 2 f�1; 1gN ; but
even in this case, a rigorous analysis is restricted to M = �N , small �; and I take
also b = 0: This is not so natural for the neural nets, but makes the analysis easier.
(Talagrand also investigated to �1 case for the patterns)
Gaussian patterns have the advantage that they lead to a �very simple�geo-

metric question, which is actually in spirit somewhat close to the questions popping
up in the problems on compressed sensing. Then the M �Gaussian patterns�de-
�ne M half spaces H� := H0;�� of RN which are randomly chosen, independent,
and with the uniform distribution.
We have M = �N independent such half spaces and ask if

TM
�=1Hi contains a

point in �N = f�1; 1gN : It turns out that there is a critical value �cr such that for
� < �cr; NN;� :=

���T�N
�=1H� \ �N

��� is exponentially growing in N; and if � > �cr;

the intersection is ; with high probability (as N !1).
The most interesting aspect is the precise evaluation of �cr. Some information

can be obtained through a �rst moment computation.

ENN;� = E
X
�2�N

I

�
� 2

\[�N ]

�=1
H�

�
=
X
�2�N

P
�
� 2

\[�N ]

�=1
H�

�
:
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For any �; and any �; the probability is 1=2 that � 2 H�: By the independence of
the choice of the H�; one has

P
�
� 2

\[�N ]

�=1
H�

�
= 2�[�N ];

and therefore
ENN;� = 2

N�[�N ]:

Therefore, if � > 1; one has

P
�\[�N ]

�=1
H� \ �N 6= ;

�
= P (NN;� � 1) � ENN;� ! 0:

As for � < 1; ENN;� ! 1 exponentially fast, one may conclude that in this

case P
�T[�N ]

�=1 H� \ �N 6= ;
�
! 1; but this is not the case. In fact

�cr < 1;

and so there are � < 1 with ENN;� !1 but NN;� ! 0 in probability.
The approach by Gardner and Derrida [15] was through a mathematically non-

rigorous replica computation. Shortly later, Mézard in [18] used a (non-rigorous)
version of his cavity to reproof the results. Talagrand was able to give rigorous
versions of cavity method in [25], particularly in Chapters 2,3,8,9.
To see the relations with spin glass theory: Let u be a function R! [�1;1);

and i.i.d. Gaussians Jij; 1 � i �M = �N; 1 � j � N; we de�ne

NN;u;� =
X
�

exp

�X[�N ]

i=1
u
�
N�1=2

XN

j=1
Jij�j

��
;

and
f (�; u) = lim

N!1

1

N
logNN;u;�:

Evidently, our half-space problem is just the case u (x) := �11x<0: The correct
critical value �cr is then determined by

�cr := sup f� : f (�) > 0g :

The case u (x) = �11x<0 makes the analysis di¢ cult, and Talagrand �rst chose
u bounded and smooth, and later used a very delicate approximation of the u by
smooth functions. At the end of a rather complicated analysis, he was able to prove
the following result, essentially for rather general u including u (x) = �11x<0:
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Theorem 2.2
Under some smallness condition (e.g. for u = �11x<0 that � is small enough, or
that u (x) = v (�x) ; v �nice�and � small enough) one has the �replica symmetric�
situation, meaning

a) The �xed point equation for the pair (q; r) 2 [0; 1)� R+

q =

Z
tanh2

�p
�rz

�
� (dz) ; r =

Z
 2q (

p
qz)� (dz) (2.6)

with

 q (x) :=
1p
1� q

R
z exp

�
u
�
x+

p
1� qz

��
� (dz)R

exp
�
u
�
x+

p
1� qz

��
� (dz)

(2.7)

has a unique solution.

b)

f (�; u) = ��r (1� q)

2
+

Z
log cosh

�p
�rz

�
� (dz)

+�

Z
� (dz0) log

Z
� (dz) exp

hp
qz0 +

p
1� qz

i
+ log 2

c) For u = �11x<0; �cr < 1:

Remark 2.3
a) The above formula is the so-called �replica symmetric� formula which can
be obtained (and has been obtained by Gardner-Derrida) by a replica com-
putation assuming a replica symmetric ansatz. Talagrand doesn�t prove the
correctness of the formula up to �cr, but nevertheless he was able to prove c)
by an additional argument. Gardner-Derrida argue that the formula is cor-
rect up to �cr so that �cr can be determined by the formula. It is understood
in the physics literature that the replica symmetric case is the one where the
BP equations have a unique solution, and the free energy is given through
the Bethe entropy.

b) There exist no results about replica symmetry breaking for this model. There
are some results (or considerations) that a proper Parisi-type formula should
involve minimax formulae. (see [2])

c) For u = �11x<0 one has

 q (x) =
1p
1� q

'
�
x=
p
1� q

�
�
�
x=
p
1� q

�
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with '; � the standard normal density, and distribution function. Remark
that this function is smooth even though u is of course not. In fact,  q is al-
ways smooth provided u satis�es only a growth condition u (x) � C (1 + jxj) :

TAP-type equations had �rst been given (non-rigorously) by Mézard [18].
There exists no mathematical proof of their validity in the perceptron model,
but nonetheless, we will see how to construct solutions by iterations.
We �rst assume that u is smooth, but it will quickly turn out that this is

not of importance. The key point is that one best introduces additional �virtual�
variables

Sk :=
NX
�=1

��
J�kp
N
; k = 1; : : : ;M;

so that the Hamiltonian is just
P

k u (Sk) : A somewhat arti�cial factor graph can
be constructed in the following way: The variable nodes are � = 1; : : : ; N; and
k = 1; : : : ;M: The variables are �i 2 f�1; 1g and Sk 2 R. This is not quite
covered by the framework of Lecture 1, as the alphabet for the Sk is not �nite,
but we disregard this point. There is a function node ak which is connected with
k and all of the i; and the corresponding function is

 ak (Sk; (�i)) = I
�
Sk = N�1=2

X
i
Jik�i

�
;

I denoting the indicator function. Then, there are functions nodes bk which are
just connected with k; with the function  bk (Sk) = exp [u (Sk)] : I am not going
to give the heuristic derivation of the TAP equations from the corresponding BP
equations. The interested reader may consult the paper by Mézard [22] where the
Hop�eld net is considered which has a somewhat similar bipartite structure, and
where the TAP equations are derived from the BP equations. In principle, we are
of course only interested in mi = E�i; but it turns out that one better relates
them to Sk: Fortunately, it su¢ ces to relate them to

nk := Eu0 (Sk) :

The TAP equations then are

mi = tanh

�XM

k=1

Jikp
N
nk � �mi

Z
 0q (

p
qz)� (dz)

�
; (2.8)

nk =  q

�XN

i=1

Jikp
N
mi � nk (1� q)

�
:

As usual, they have to be understood to be valid (if at all) in the N !1 limit.
An interesting point is that these equations make perfect sense, even if u is not

di¤erentiable. Therefore, one can discuss such solutions even for non-di¤erentiable
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u disregarding that then, one does know what the nk really are. This is important,
as the equations make perfect sense also in the case u (x) = �11x<0:
One remark: The Onsager term nk (1� q) in the second TAP equation is just

nk

Z
tanh0

�p
�rz

�
� (dz) :

This suggests that we could consider pairs of equations, which come from two
arbitrary smooth functions f; h : R! R satisfying growth conditions

jf (x)j ; jh (x)j � C (1 + jxj)

for some C > 0; which play the rôle of tanh and  q: The pair (q; r) should satisfy

q =

Z
f 2
�p

�rz
�
� (dz) ; r =

Z
h2 (

p
qz)� (dz) ;

and the coupled TAP-type equations would look as

mi = f

�X�N

k=1

Jikp
N
nk � �mi

Z
h0 (
p
qz)� (dz)

�
(2.9)

nk = h

�XN

i=1

Jikp
N
mi � nk

Z
f 0
�p

�rz
�
� (dz)

�
:

In the next lecture, I will present the scheme how to construct solutions of
these equations (in the N ! 1 limit), and in the last lecture I will indicate how
to derive the Gardner formula from these equations.

3 Lecture 3: The iterative construction of solu-
tions of the TAP equations

3.1 The Sherrington-Kirkpatrick model

It is quite suggestive to solve the TAP equations with an iterative procedure.
There had been a number of suggestions in the literature, but except for very high
temperature (i.e. small �), they had not been successful, and therefore, it had been
considered to be di¢ cult to construct solutions of the TAP equations directly, even
in the replica symmetric regime (see the comments about this point in [21]). The
�rst procedure with convergence in the full high temperature regime was given
in [5], which reveals a quite interesting structure, and uses for the mathematical
analysis a conditioning technique which has now found other applications, see for
instance [3], [28], [4].
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The iteration constructs a sequence m[t] =
�
m
[t]
i

�
i=1;:::;N

; t 2 N, in the follow-
ing way:

m
[t+1]
i := tanh

�
h+ �

XN

j=1

Jijp
N
m
[t]
j � �2 (1� q)m

[t�1]
i

�
;

with the starting condition m[0]
i = 0; m

[1]
i =

p
q: Here q = q (�; h) is always the

solution of the �xed point equation (2.4). The fact that one takes the Onsager
term one time index back is very crucial for the convergence property.
The di¢ culty in the analysis of the convergence properties comes from the fact

that the m[t]
j depend in a complicated and non-linear way on the matrix (Jij) ; and

so, it is not clear how to proceed. The surprising point is that the �dangerous�
part of this dependence is cancelled by the Onsager term, but only if one takes it
back one time index.
There is one modi�cation we want to make which is not very important, but

which simpli�es the computations (unfortunately it complicates the notation). Up
to now, we have assumed that Jij = Jji; and Jii = 0: First of all, it is not important
to take Jii = 0; as this leads only to a correction of order 1=

p
N which can be

neglected. Secondly, it is more convenient to take the N2 random variables Jij as
completely independent standard Gaussians. Then

J symij =
Jij + Jjip

2

is the matrix which enters in the expression for the TAP iteration, so we take it
in this form:

m
[t+1]
i := tanh

�
h+ �

XN

j=1

J symijp
N
m
[t]
j � �2 (1� q)m

[t�1]
i

�
;

where it is now understood that the Jij are i.i.d. This looks to be rather irrelevant,
but we will now do the construction based on Jij which leads to slightly di¤erent
objects than if we would do it directly on J symij : The latter was actually done in [5]
which contributed to the heavy technicalities there.
As m[1] =

p
q1, and m[0] = 0; we have for the t = 2 the expression

m
[2]
i := tanh

�
h+ �

p
q
XN

j=1

Jijp
2N

+ �
p
q
XN

j=1

Jjip
2N

�
:

We write

�i :=
XN

j=1

Jijp
N
; �i :=

XN

j=1

Jjip
N
; � i :=

�i + �ip
2

;
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so that
m
[2]
i := tanh (h+ �

p
q� i) :

The �i are of course i.i.d. standard Gaussians, as well as the �i; but there is a
slight correlation between �i and �j : E�i�j = N�1: Therefore, also the � i are not
totally independent, but the correlations E� i�j = 1=N; i 6= j; become small for
large N:
So far, there is nothing exciting going on, and we go to the next step: There

one also has the Onsager term appearing but as we go two time indices back for
it, it is still deterministic:

m
[3]
i := tanh

�
h+ �

XN

j=1

Jij + Jjip
2N

m
[2]
j � �2 (1� q)

p
q

�
: (3.1)

We are now faced with the problem that the m[2]
j already depend in a non-linear

way on the J-matrix, but it turns out that it does so in a rather controllable way.
As seen from the expression for m[2]; this depends on (Jij) only through the ��s
and ��s. By standard linear algebra, we can correct (Jij) by a linear combination of
these variables to get it independent of them. In fact, an elementary computation
reveals that

J
[2]
ij = Jij �

�ip
N
�

�jp
N
+

1

N3=2

NX
i=1

�i:

is independent of
�
�i; �j

�
: Actually, it would su¢ ce to get J [2]ij independent of the

� i; but it is more convenient to do it in the above form. (At least the formulae are
simpler, but I am not completely sure that it doesn�t have drawbacks for the later
analysis). For the purpose here, the last summand on the rhs is not relevant as it
gives a negligible contribution. (It will however be important in the next lecture).
Replacing J by J [2]; and neglecting the last summand, we get

XN

j=1

J symijp
N
m
[2]
j �

XN

j=1

J
[2]sym
ijp
N

m
[2]
j +

XN

j=1

� i + �j
N

m
[2]
j :

The �j are centered Gaussian, but not quite independent:

E�2i = 1 +
1

N
; E� i�j =

1

N
:

Despite of these correlations, we can apply a law of large numbers, giving

1

N

NX
j=1

m
[2]
j =

1

N

NX
j=1

tanh
�
h+ �

p
q�j
�
!
Z
tanh (h+ �

p
qz)� (dz) =: 
1;
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1

N

NX
j=1

�jm
[2]
j =

1

N

NX
j=1

�j tanh
�
h+ �

p
q�j
�
!
Z
z tanh (h+ �

p
qz)� (dz)

= �
p
q

Z
tanh0 (h+ �

p
qz)� (dz)

= �
p
q

Z �
1� tanh2 (h+ �

p
qz)
�
� (dz)

= �
p
q (1� q) ;

so this last part miraculously cancels the Onsager part in (3.1). In the end, we get

m
[3]
i � tanh

 
h+ �

XN

j=1

J
[2]sym
ijp
N

m
[2]
j + �
1� i

!
: (3.2)

I am not precise with the approximations which indeed needs considerable care (not
here but in the later iterations), and just pretend that for all the ensuing compu-
tations, we can replace m[3] with the right hand side of (3.2). What have we really
gained? The fact is: quite a lot. J [2]symij and m[2]

j are now independent. There-

fore, conditionally on F1 := � (�i; �i; 1 � i � N) ; Xi := N�1=2PN
j=1 J

[2]sym
ij m

[2]
j is

Gaussian. It is not di¢ cult to check that the conditional covariances of the Xi are
negligible (or order N�1), so we compute the conditional variance. Fortunately,
the covariances of J [2]ij have a simple form

E
�
J
[2]
ij J

[2]
st

�
=

�
�is �

1

N

� �
�jt �

1

N

�
: (3.3)

The 1=N -corrections are crucial here. Using the independence of J [2] and m[2]; we
get

E

0@ XN

j=1

J
[2]sym
ijp
N

m
[2]
j

!2������F1
1A

=
1

N

X
j;s

�
1

2
E
�
J
[2]
ij J

[2]
is

�
+ E

�
J
[2]
ij J

[2]
si

�
+
1

2
E
�
J
[2]
ji J

[2]
si

��
m
[2]
j m

[2]
s :

Using (3.3), one sees that the second summand gives only a 1=N contribution, and
the �rst and third give the same. So we get

1

N

X
j;s

�
1� 1

N

� �
�js �

1

N

�
m
[2]
j m

[2]
s =

1

N

X
j

m
[2]2
j �

 
1

N

X
j

m
[2]
j

!2
+O

�
1

N

�
:
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The crucial point is that although this conditional variance is of course random
(and F1-m.b.), it is not so in the limit, as we can apply the LLN for the expression
on the rhs:

1

N

X
j

m
[2]2
j � q;

1

N

X
j

m
[2]
j � 
1:

Therefore, one has for large N :

m
[3]
i � tanh

�
h+ �

q
q � 
21Z

[2]
i + �
1� i

�
(3.4)

with independent Gaussians Z [2]i ; which are also independent of the � i; the latter,
although being slightly correlated, also just behave like i.i.d. standard Gaussians.
Using that, one can approximately compute the inner products in RN :

1

N

NX
i=1

m
[3]
i �

Z
tanh (h+ �

p
qz)� (dz) = 
1; (3.5)

1

N

NX
i=1

m
[3]2
i �

Z
tanh2 (h+ �

p
qz)� (dz) = q: (3.6)

Slightly more interesting is

1

N

NX
i=1

m
[3]
i m

[2]
i �

Z
tanh

�
h+ �

q
q � 
21z

0 + �
1z

�
� tanh (h+ �

p
qz)� (dz)� (dz0) =: �2:

For later purposes, we write � [1]; �[1]; �[1] for �; �; �; respectively.
The computations of the inner products can now be used to handle

m
[4]
i = tanh

�
h+ �

X
j

J symijp
N
m
[3]
j � �2 (1� q)m

[2]
i

�
:

which is more interesting as there the Onsager term in the iterative scheme is
random. That we take m[2] in this Onsager correction of m[4] is absolutely crucial
for the cancellation which would not happen withm[3]; and in fact, the convergence
property would be considerably worse. I sketch the computation for m[4], as one
sees only here what is really happening.
We �rst replace J by J [2]: The corrections are similar as before:XN

j=1

J symijp
N
m
[3]
j �

XN

j=1

J
[2]sym
ijp
N

m
[3]
j +

XN

j=1

�
[1]
i + �

[1]
j

N
m
[3]
j

�
XN

j=1

J
[2]sym
ijp
N

m
[3]
j + 
1�

[1]
i +

1

N

XN

j=1
�
[1]
j m

[3]
j ;
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using (3.5), but the last summand is di¤erent from the one obtained before. We
can however get it again by the type of computation before, using (3.4):

1

N

XN

j=1
�jm

[3]
j �

Z
z tanh

�
h+ �

q
q � 
21z

0 + �
1z

�
�
2 (dz; dz0)

= �
1

Z �
1� tanh2 (h+ �

p
qz)
�
� (dz) = �
1 (1� q) :

Plugging that in, we arrive at

m
[4]
i � tanh

 
h+ �

XN

j=1

J
[2]sym
ijp
N

m
[3]
j + 
1�

[1]
i � �2 (1� q)

�
m
[2]
i � 
1

�!
: (3.7)

In this form, we still have a non-trivial dependence between J [2] and m[3] with
which it is di¢ cult to see what the behavior is. We cannot argue in exactly the
same way as we did before: Although J [2] is still Gaussian (J [3] will no longer be),
m[3] is not a simple function (i.e. tanh) of a linear combination of the J [2]: The way
out is to condition of F1; i.e. keep the �; �; � ��xed�. Looking at (3.2), one sees that
conditionally on F1; inside tanh form[3] one has simply a linear combination of the
J [2] with coe¢ cients which are F1-measurable. There is the technical di¢ culty that
the expression on the rhs of (3.2) is only an approximation of m[3]; but we neglect
this, although it turns out to be quite a nasty di¢ culty. Anyway, the natural
procedure is to correct J [2] to make it conditionally independent of

P
j J

[2]symm
[2]
j ;

conditionally on F1: This can now be done just by linear algebra again, and the
outcome is the matrix J [3]ij which is fairly simple.

J
[3]
ij = J

[2]
ij �

�
[2]
i �

[2]
jp
N

�
�
[2]
i �

[2]
jp
N

+

P
i �
[2]
i �

[2]
i

N3=2
�
[2]
i �

[2]
j (3.8)

�
(2)
i :=

m
(2)
i � 
1p
q � 
21

; �
[2]
i :=

X
j

J
[2]
ijp
N
�
[2]
j ; �

[2]
j :=

X
i

�
[2]
i

J
[2]
ijp
N
:

The matrix J [3] is conditionally independent of �[2]; �[2]; conditioned on F1; and
is conditionally Gaussian. However, it is evidently no longer unconditionally
Gaussian. The conditional covariances have an explicit expression:

E
�
J
[3]
ij J

[3]
st

���F1� = "�is � 1

N
� �

[2]
i �

[2]
s

N

#"
�jt �

1

N
�
�
[2]
j �

[2]
t

N

#
: (3.9)

Remark here that the �[2] are functions of m[2], the latter being F1-m.b.
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Replacing now J
[2]sym
ij by J [3]symij ; a simple computation leads to

m
[4]
i � tanh

 
h+ �

XN

j=1

J
[3]sym
ijp
N

m
[3]
j + �
1�

[1]
i + �
2�

[2]
i

!
: (3.10)

In fact, the last correction in (3.8) is again negligible, and the �rst give the addi-
tional 
2�

[2]
i with

�
[2]
i =

1p
2

�
�
[2]
i + �

[2]
i

�
;

with some (non-random) 
2 > 0 satisfying 
21 + 
22 < q; and the second part in
(3.8) cancels (miraculously) the rest of the Onsager correction.
The crucial advantage of the expression in (3.10) is the following: Conditionally

on F2 := �
�
�[s]; �[s] : s � 2

�
; the summand N�1=2PN

j=1 J
[3]sym
ij m

[3]
j is Gaussian.

One can compute its variance, using (3.9), which for �nite N depends on F2 in
a non-trivial way, but by a LLN as the one discussed before, the variance is
non-random in the N !1 limit, namely just

q � 
21 � 
22:

So, this part becomes in the N !1 limit independent of F2: In a similar way, � [2]
is conditionally Gaussian, conditioned on F1; which in the limit N !1 becomes
independent (and standard normal) of F1: In the end, one has

m
[4]
i � tanh

�
h+ �

q
q � 
21 � 
22Z

[3]
i + �
1�

[2]
i + �
2�

[1]
i

�
(3.11)

with (asymptotically) independent standard normal � [1]i ; �
[2]
i ; Z

[3]
i : This in turn

makes it possible the compute

lim
N!1

1

N

X
i

m
[s]
i m

[t]
i

for s; t � 4; which is needed for the next iteration.
Here now is the general scheme: De�ne sequences f�kg ; f
kg by


1 =

Z
tanh (h+ �

p
qz)� (dz) ; �1 :=

p
q
1;

and recursively

�k :=  
�
�k�1

�
; 
k :=

�k �
Pk�1

j=1 

2
jq

q �
Pk�1

j=1 

2
j
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where  : [0; q]! (0; q] is de�ned by

 (t) :=

Z
tanh

�
h+ �

p
tz + �

p
q � tz0

�
� tanh

�
h+ �

p
tz + �

p
q � tz00

�
�
3 (dz; dz0; dz00) :

Remark that  (q) = q; and  (0) = 
21:
Of crucial importance is the behavior of this function: For any bounded (smooth)

function f : R! R, one gets, using
R
xg (x)� (dx) =

R
g0 (x)� (dx)

d

dt

Z
f
�p

tz +
p
q � tz0

�
f
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

=

Z �
zp
t
� z0p

q � t

�
f 0
�p

tz +
p
q � tz0

�
f
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

=

Z
f 00
�p

tz +
p
q � tz0

�
f
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

+

Z
f 0
�p

tz +
p
q � tz0

�
f 0
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

�
Z
f 00
�p

tz +
p
q � tz0

�
f
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

=

Z
f 0
�p

tz +
p
q � tz0

�
f 0
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00) � 0:

This is strictly positive, unless f is constant. This implies that  above is strictly
increasing, and applying the same computation to f 0 instead of f; that f is strictly
convex on [0; q] : Furthermore

d (t)

dt

����
t=q

= �2
Z
tanh0 (h+ �

p
qx)2 � (dx)

= �2
Z

� (dx)

cosh4
�
h+ �

p
qx
� :

Evidently, this derivative is� 1, i.e. the de Almeida-Thouless condition is satis�ed,
if and only if  (t) = t has the only solution q: It is easy to see that this implies
the following result

Lemma 3.1
(2.5) is satis�ed, if and only if

lim
n!1

�n = q

which holds, if and only if
1X
n=1


2n = q:
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Similarly, as in (3.11), one gets a representation (asymptotically with N !1),
for any k

m
[k]
i � tanh

 
h+ �

r
q �

Xk�2

s=1

2sZ

[k�1]
i + �

Xk�2

s=1

s�

[s]
i

!
; (3.12)

where for k > `; � [1]; : : : ; � [`�1] in the expression for m[`]
i are the same as in the

expression for m[k]
i :

Theorem 3.2
For any �; h; and any k; Z [k�1]i ; �

[s]
i ; s � k � 2 in the representation on the rhs of

(3.12) become independent standard normal in the N !1 limit.

These results are correct for any �; h: The above Lemma 3.1, then implies that
the iteration converges if and only if (2.5) holds, in the form of the following result:

Theorem 3.3
(2.5) is satis�ed if and only if

lim
k;`!1

lim sup
N!1

E
1

N

NX
i=1

�
m
[k]
i �m

[`]
i

�2
= 0:

Remark 3.4
Although Theorem 3.2 is valid for all �; h; the approach to construct (asymptot-
ically) solutions of the TAP equation is unfortunately still strictly restricted to
the high-temperature region. For the belief propagation equations in locally tree
like models, there is complicated non-rigorous approach explained in Ch 19 of [20]
for the behavior in a �replica symmetry breaking�regime, but this non-rigorous
approach is for the time restricted to 1RSB situations. I also don�t know if it can
be adapted for the TAP equations.

For the discussion in the next lecture, we need the exact scheme how to con-
struct the �[s]-objects for general s: First, �[s] 2 RN comes from a Gram-Schmidt
orthogonalization out of the m[s] :

�[s] :=
m[s] �

Ps�1
k=1

D
m[s]; �[k]

E
�[k]


m[s] �

Ps�1
k=1

D
m[s]; �[k]

E
�[k]





with hx; yi := N�1PN
i=1 xiyi; kxk :=

p
hx; xi: Assuming that the matrices J [k] =�

J
[k]
i;j

�
have been constructed for k � s; one has

�
[s]
i :=

X
j

J
[s]
ijp
N
�
[s]
j ; �

[s]
j :=

X
i

�
[s]
i

J
[s]
ijp
N
; �

[s]
i :=

�
[s]
i + �

[s]
ip

2
;
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and then J [s+1] is conditionally Gaussian, given

Fs�1 := �
�
�[k]; �[k] : k � s� 1

�
with conditional covariances

E
�
J
[s+1]
ij J [s+1]uv

���Fs�1� =  �iu � 1

N

sX
k=1

�
[k]
i �

[k]
u

! 
�jv �

1

N

sX
k=1

�
[k]
j �

[k]
v

!
(3.13)

(The �[k] are Fk�1-m.b.). The J [s] are concretely constructed from J and the �; �; �

J
[s]
ij = Jij �

s�1X
k=1

�
[k]
ij (3.14)

with

�
[k]
ij =

�
[k]
i �

[k]
j + �

[k]
i �

[k]
jp

N
�
�
[k]
i �

[k]
jp
N

D
�[k]; �[k]

E
: (3.15)

An important point is that �[k] and m[k] are Fk�1-m.b. Therefore, the rhs above
is conditionally on Fk�1 a linear combination of the �[k]; �[k]:

Lemma 3.5
With this construction, J [s+1] is conditionally independent of Fs, given Fs�1:

3.2 The perceptron

Surprisingly, the above scheme applies, with modi�cations of course, to many other
situations, including the perceptron [7], the Hop�eld net [22], compressed sensing
[3], and probably others.
I sketch the approach for the perceptron, but I just take the general situation

in (2.9). Then the iteration is

m
[t+1]
i = f

�X�N

k=1

Jikp
N
n
[t]
k � �m

[t�1]
i

Z
h0 (
p
qz)� (dz)

�
n
[t+1]
k = h

�XN

i=1

Jikp
N
m
[t]
i � n

[t�1]
k

Z
f 0
�p

�rz
�
� (dz)

�
:

For the starting one takes

m
[1]
i =

p
q; n

[t]
k =

p
r

where q; r satisfy
q = Ef 2

�p
�rZ

�
; r = Eh2 (

p
qZ) :
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We don�t even have to assume that q; r are uniquely determined by f; h: We
just have to assume that we have such q; r: Then, the scheme converges if and only
if

(	f �	h)0 (r) � 1
where

	f (t) : =

Z
f
�p

tz +
p
q � tz0

�
f
�p

tz +
p
q � tz00

�
�
3 (dz; dz0; dz00)

	h (t) : =

Z
h
�p

tz +
p
r � tz0

�
h
�p

tz +
p
r � tz00

�
�
3 (dz; dz0; dz00) ;

and there are completely analogous representations as in the SK-case ([7]).

3.3 Compressed sensing

This is the �classical�regression problem to �nd estimates for an unknown para-
meter x 2 RN based on observations y given as

y = Ax+ w

where A is an n � N matrix, and w possible noise. The standard (for instance
least square) regression procedure requires of course n > N: In many modern
applications, one however has n � N; assuming however that the number of
relevant parameters xi is small. More precisely, one assumes that

m := # fi : xi 6= 0g

is much smaller than N; but one does not assume any knowledge about fi : xi 6= 0g
except its smallness.
There is a tremendous amount of practical, algorithmic, and theoretical work

on such problems, and it has been one of the main research topics in statistics over
the past 20 years. There are many very sophisticated methods to achieve good
estimates of x mainly developed by Dave Donoho, Emmanuel Candès and others.
For a survey, see [8]. One of the favorite methods is the �lasso�which is based on
minimizing L1-norms.
An algorithmically fast procedure is a simple iterative scheme, namely to start

with an original �guess�, x[0] 2 RN and iteratively de�ne

x[t+1] := �[t]
�
AT z[t] + x[t]

�
with AT the transpose of A; a properly chosen threshold function �[t] : RN ! R;
and the residual

z[t] := y � Ax[t]: (3.16)
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The threshold function is chosen to kick parameters out which are small, and
therefore should not have any in�uence in the end. Evidently, one has to tune
this threshold function carefully. Although algorithmically very fast, this iteration
proved to be not very satisfactory, both from practical and theoretical viewpoints.
For the theoretical sides, one usually assumes a probabilistic structure of A; for
instance taking i.i.d. or even Gaussian components, and one lets N ! 1 with n
proportional to n; say n = �N: Furthermore, one assumes that m = �n; and one
wants to decide for which range of �; it is possible to identify the parameters in the
N !1 limit. Furthermore, a �good�algorithm should be able to converge to the
right parameters in this region. It turns out that there is a critical value �cr (�) ;
such that an identi�cation is possible for � < �cr (�) : However, the above iterative
procedure is not able to catch that regardless how the threshold is chosen.
Using BP arguments, Donoho, Maleki, and Montanari [14] developed a �cor-

rection�to the above procedure, which is closely related to the Onsager correction:
Instead of (3.16), one takes

z[t] := y � Ax[t] + ��1z[t�1]
�
�[t] � �[t�1]

� 

AT z[t�1] + x[t�1]

�
which numerically lead to much better results. The argument was based on a
careful investigation of BP equations, and later, in a number of papers, for instance
in [3], [4], a theoretic foundation was found, based on the conditioning method
explained above.

4 Lecture 4: Applications of the iterative scheme
to evaluate the free energy

I will concentrate on showing how the iterative scheme can be used to rederive
the free energy for the SK model in the replica symmetric regime [6]. This is of
course far from a new result, and for the case I present, there are quite simple
proofs, the simplest one is that by Latala (see [25], Sect 1.4). The method how-
ever also probably works for the perceptron [7], where interpolation methods are
rather cumbersome, and probably also for other cases, like the Hop�eld net or the
assignment problem, but this has not been worked out, yet. The method could
also give some new results about �nite N corrections, but also this is not worked
out, yet.
So, we consider the standard Sherrington-Kirkpatrick model with an ex-

ternal �eld having the random Hamiltonian

H�;h (�) :=
�p
2

NX
i;j=1

Jijp
N
�i�j + h

NX
i=1

�i
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where � > 0 and h 2 R are real parameters, � = (�i) 2 �N := f�1; 1gN ; and Jij
for i; j are i.i.d. centered Gaussians with variance 1=N; de�ned on a probability
space (
;F ;P).
The random partition function is

ZN;�;h := 2
�N
X
�

exp [H�;h (�)] ;

and the Gibbs distribution is

GIBBSN;�;h (�) :=
2�N

ZN;�;h
exp [H�;h (�)] : (4.1)

It is known that

f (�; h) := lim
N!1

1

N
logZN;�;h = lim

N!1

1

N
E logZN;�;h

exists, is non-random, and is given by the Parisi variational formula (see [16], [25],
[23]). Furthermore, it is known that for small �; f (�; h) is given by the replica-
symmetric formula, originally proposed by Sherrington and Kirkpatrick ([26]):

Theorem 4.1
There exists �0 > 0 such that for all h; � with � � �0

f (�; h) = RS (�; h) := inf
q�0

"Z
log cosh (h+ �

p
qx)� (dx) +

�2 (1� q)2

4

#
: (4.2)

Here, � is the standard Gaussian distribution.

For h 6= 0; the in�mum is uniquely attained at q = q (�; h) which satis�es

q =

Z
tanh2 (h+ �

p
qx)� (dx) :

As stated before, this equation has a unique solution for h 6= 0; and for h = 0 if
� � 1:

f (�; h) = RS (�; h) is believed to be true under the de Almeida-Thouless con-
dition (2.5), but this is still an open problem, despite of the fact that it has been
proved to be the right condition for the convergence of the TAP iterates in Lecture
3.
At h = 0; the AT-condition is � � 1; and in this regime, f (�; 0) = RS (�; 0) =

�2=4 is known since long and can easily be proved by a second moment method.
In fact, in this case, the free energy equals the annealed free energy

f (�; 0) = fann (�; 0) = lim
N!1

1

N
logEZN;�;0 = �2=4:
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This last equation is correct for h = 0 and all �: However, one needs � < 1 to
prove that

EZ2 � C (�) (EZ)2

where C (�) does not depend on N: Together with a concentration of measure
result, this proves f (�; 0) = �2=4:
It is however easy to see that for h 6= 0, and any � > 0; neither f (�; h) nor

RS (�; h) equals fann (�; h).
Our aim is to prove that f (�; h) = RS (�; h) can, for small �; be proved

by a conditional �quenched=annealed�argument, via a second moment method.
Roughly speaking, we prove that there is a sub-�-�eld F̂ � F such that

f (�; h) = lim
N!1

N�1 logE
�
ZN j F̂

�
= RS (�; h)

almost surely, and where we can estimate the conditional second moment by the
square of the �rst one. A key point is the connection with TAP iteration of the last
lecture. The reason the method works is that the conditionally annealed Gibbs
measure is essentially a Curie-Weiss type model, centered at the solution of the
TAP equation, and as such it can be analyzed as a classical mean-�eld model.
The method is closely related to arguments used for the �rst time by Morita

in [19]. In fact, Morita invented the method to derive the quenched free energy by
a partial annealing, �xing part of the Hamilton which is handled in a �quenched
way�, but where this quenched part can be analyzed much easier than for the
full Hamiltonian. This is exactly what we do here by the conditioning. To my
knowledge, the method has never been applied to mean-�eld spin glasses.
From the result we obtain, it easily follows that for small �; the free energy is

given by the TAP-variational formula as formulated in [9].
Unfortunately, the argument (for the moment I hope) does not work in the full

AT-region.
We actually don�t work with a single F̂ � F , but instead take the sequence

fFkg of the last lecture. We Ek for the conditional expectation given Fk: The key
result is

Proposition 4.2
If h > 0 and � is small enough then

lim
k!1

lim sup
N!1

E
���� 1N logEk (ZN)� RS (�; h)

���� = 0:
Proposition 4.3
Under the same conditions as in Proposition 4.2,

lim
k!1

lim sup
N!1

E
���� 1N logEk

�
Z2N
�
� 2RS (�; h)

���� � 0:
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Remark 4.4
The requirement on � is rather unsatisfactory. I believe that at least Proposition
4.2 is correct in the full AT-region (2.5).

We give now the proof of Theorem 4.1 based on these propositions.
Proof that the propositions imply Theorem 4.1. We will use that the free
energy is self-averaging:

lim
N!1

1

N
logZN = lim

N!1

1

N
E logZN ; (4.3)

assuming the limit on the right hand side exists, which is the result in [16]. This
is a simple consequence of the Gaussian isoperimetric inequality, a fact which is
well known since long. In fact���� 1N logZN (J)�

1

N
logZN (J

0)

���� � �p
2N

kJ � J 0k

where k�k denotes the Euclidean norm in RN(N�1)=2: Therefore

P
����� 1N logZN � E

1

N
logZN

���� � t

�
� exp

�
�t2N=�2

�
This proves the �rst equality in (4.3).
The upper bound in the second equality of (4.3) follows by Jensen�s inequality

lim sup
N!1

1

N
E logZN � lim sup

N!1

1

N
E logEk (ZN)

for all k: Therefore, by Proposition 4.2,

lim sup
N!1

1

N
E logZN � RS (�; h) : (4.4)

For the estimate in the other direction, we rely on a second moment argument.
For k;N 2 N; set Ak;N :=

�
ZN � 1

2
Ek (ZN)

	
Ek (ZN) = Ek

�
ZN ;A

c
k;N

�
+ Ek (ZN ;Ak;N)

� 1

2
Ek (ZN) +

q
Ek (Z2N)Pk (Ak;N)

and therefore

Pk (Ak;N) �
Ek (ZN)2

4Ek (Z2N)
: (4.5)
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Using Proposition 4.3, we can for an arbitrary " > 0 choose k large enough, and
given such a k; we �nd N0 ("; k) such that for N � N0

P

 
Ek (ZN)2

4Ek (Z2N)
� e�"N

!
� 1

2
;

and therefore, by (4.5), and the de�nition of Ak;N ;

P
�
Pk
�
1

N
logZN �

1

N
logEk (ZN)�

log 2

N

�
� e�"N

�
� 1

2
;

By (??), we �nd for any "0 > 0; a c ("0) > 0 and a k0 ("0) 2 N such that for
k � k0 ("

0) ; we �nd N 0
0 ("

0; k) such that for N � N 0
0; we have

P
�
1

N
logEk (ZN) � RS (�; h)�

"0

2

�
� 3

4
;

and N�1 log 2 � "0=2: Therefore, for N � max (N 0
0; N0)

P
�
Pk
�
1

N
logZN � RS (�; h)� "0

�
� e�"N

�
� 1

4
;

implying by the Markov inequality

P
�
1

N
logZN � RS (�; h)� "0

�
� 1

4
e�"N : (4.6)

By Gaussian isoperimetry, we have for any � > 0 and large enough N

P
����� 1N logZN �

1

N
E logZN

���� � �

�
� 1� exp

�
��N=�2

�
:

If we choose " < �=�2; it follows that for N large enough one has

1

N
E logZN � RS (�; h)� "0 � �

and as � and "0 are arbitrary, we get

lim inf
N!1

1

N
E logZN � RS (�; h) :

Together with (4.4), this proves (4.3).
I sketch how to prove the above propositions which is quite straightforward,

given the iterative construction. The basic idea is to �trust� the physicists that
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the TAP solutions are the means of the ��s, and that under the Gibbs distribution,
the �i are not too far away from coin tossing with the tilts from the mi: However,
globally, there is an important di¤erence to tilted coin tossing which is also re�ected
in the fact that the TAP equations need the Onsager correction.

ZN :=
X
�

2�N exp

"
�p
2N

X
i;j

Jij�i�j + h
X
i

�i

#
:

Now, we take the TAP solutions:

hi : = h+ �
X

j

J symijp
N
mj � �2 (1� q)mi

mi = tanh (hi)

I am bit sloppy here: In all I am doing below, one has to take the iterations m[k]

for �nite k; lets �rst have N !1; and k !1 afterwards. I am pretending here
that one can take k =1 and do the N !1 limit afterwards. So, there are some
estimates to do which I put under the carpet.
The tilted coin tossing is given by

pi (�i) =
1

2

exp [hi�i]

cosh (hi)
:

Then

ZN =
NY
i=1

cosh (hi)Z
0
N

with

Z 0N :=
X
�

p (�) exp

"
�p
2N

X
i;j

Jij�i�j � �
X
i;j

�i
J symijp
N
mj + �2 (1� q)

X
�imi

#
:

(The Jij here are completely i.i.d. Gaussians).
Given the iterative scheme, it is easy to prove that

lim
N!1

1

N

NX
i=1

log cosh (hi) =

Z
log cosh (h+ �

p
qx)� (dx) ;

so we obtain the �rst part of the RS-solution, and it remains to prove that

lim
1

N
logZ 0N =

�2 (1� q)

4
:
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We center the �i putting �̂i := �i �mi:

Z 0N =
X
�

p (�) exp

"
�p
2N

X
i;j

Jij�̂i�̂j �
�p
2N

X
i;j

Jijmimj + �2 (1� q)
X

�imi

#

The middle term can be evaluated from the iterative scheme and is easily proved
to be

1p
N

X
i;j

Jijmimj =
p
2�Nq (1� q) + o (N) :

Therefore

Z 0N �
X
�

p (�) exp

"
�p
2N

X
i;j

Jij�̂i�̂j �N�2q (1� q) + �2 (1� q)
X

�imi

#

=
X
�

p (�) exp

"
�p
2N

X
i;j

Jij�̂i�̂j +N�2 (1� q) h�̂;mi
#

�2

4
N k�̂k4 =

�2

4N

X
i;j

�̂2i �̂
2
j =

�2

4N

X
i;j

�
1�m2

i � 2�̂imi

� �
1�m2

j � 2�̂jmj

�
=

N�2 (1� q)2

4
� �2

4N

X
i;j

�
1�m2

i

�
2�̂jmj

� �2

4N

X
i;j

�
1�m2

j

�
2�̂imi +

�2

4N

X
i;j

2�̂imi2�̂jmj + o (N)

=
N�2 (1� q)2

4
�N�2 (1� q) h�̂;mi+ �2N

 
1

N

X
i

�̂imi

!2
+ o (N) :

Plugging that in, one gets

Z 0N = exp

"
N�2 (1� q)2

4

#
Z 00Ne

o(N)

with

Z 00N :=
X
�

p (�) exp

24 �p
2N

X
i;j

Jij�̂i�̂j �
�2

4
N k�̂k4 + �2N

 
1

N

X
i

�̂imi

!235 ;
and we have to prove

lim
N!1

1

N
logE1Z 00N = 0:
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If we could just regard the Jij as i.i.d. and independent of the mi; then the �rst
and the second summand inside exp [�] would cancel, and we would be left with a
the last summand which is just a Curie-Weiss type expression. We however have
to take the proper conditional distributions of the Jij given in the last lecture.
First, we shift J to J [k] whose conditional distribution given Fk�1 we know. We
are a bit formal pretending that we can take k =1:

�p
2N

X
i;j

Jij�̂i�̂j =
�p
2N

X
t

X
i;j

�
[t]
ij �̂i�̂j +

�p
2N

X
i;j

J
[1]
ij �̂i�̂j

Then

E1 exp

"
�p
2N

X
i;j

J
[1]
ij �̂i�̂j

#
= exp

24 �2
4N
E1

 X
i;j

J
[1]
ij �̂i�̂j

!235
which, given (3.13) can be computed as

�2

4
N

"
k�̂k2 �

X
t

D
�̂; �[t]

E2#2
� N k�̂k4 ; (4.7)

and so

E1Z 00N �
X
�

p (�) exp

"
�p
2N

X
t

X
i;j

�
[t]
ij �̂i�̂j + �2N h�̂;mi2 + o (N)

#
;

and a lower bound, taking the lhs of (4.7) into account. Taking the explicit ex-
pression of the �[t] into account, one has

1p
2N

X
i;j

�
[t]
ij �̂i�̂j = N

D
�̂; � [t]

ED
�̂; �[t]

E
+O

�p
N
�
:

The crucial point is that all terms which are linear in h�̂; xi with x 2 RN measur-
able with respect to TAP, have canceled, and what remains are quadratic terms.
These can be handled with a Curie-Weiss type estimate, provided that � is small
enough giving

E1Z 0N � exp [o (N)]
The lower bound is easy it works in the full AT-region, but for the upper bound,
I have not (yet) been able to prove that this holds for the full high-temperature
region.
The conditional second moment can be handled essentially in the same way.
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Remark 4.5
a) The most challenging problem is if this approach is restricted to high temper-
ature. For BP equations on locally tree like graphs, there is a (non-rigorous)
method to count the relevant solutions of the BP-equations, but it seems
also to be restricted to 1RSB cases ([20] Ch. 19). It would be interesting to
try to apply that to TAP equations.

The SK-model is certainly the wrong one to try something like that as it is
(supposed to be) full RSB as soon as the AT-line is crossed.

In the recent paper [18], Mézard derives (heuristically) for the Hop�eld model
TAP equations also in the so-called �retrieval phase� which is not high-
temperature, and uses iterations similar to the ones used here, and numerical
experiments.

a) A somewhat puzzling point is that the above approach is non-trivial at h = 0,
where the TAP-solutions are of course mi = 0; and quenched=annealed is
easy. If one take a small h > 0; and computes the �; �; then they don�t go
to 0 for h ! 0: So, the Fk stay non-trivial. One may regard that as a sign
that the method is not the �right one�, or also the contrary: For h = 0; one
has N�1 logEZN ! �2=4 for all �; but certainly N�1 logE1ZN ! �2=4 can
be true at most up to AT-line, i.e. � = 1:

c) It is tempting to conjecture that the random Curie-Weiss terms give a de-
scription for the �nite N correction in the high-temperature region, i.e. that
the Gibbs distribution is in leading order coin tossing with tilts to the mi

with corrections which are described by the series of random Curie-Weiss
terms.

d) For the perceptron, the formal derivation of the Gardner formula works as
well, except that we have not yet been able to handle the Curie-Weiss type
correction when replacing J with J [k]: I hope that the proof will be more
transparent than Talagrand�s. The latter is based on approximations of
u = �11x<0 by smooth functions, and careful estimates of the errors.
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